

NLWCP

New: New Physics ... potentially revolutionary in our understanding of matter, space, and time

Light: low mass possibly related to symmetries and experimentally accessible through direct production

Weakly-Coupled: implies perhaps a very high energy scale is involved and intensity experiments might be required to see rare processes sterile neutrinos

Particles: many possibilities

axions

NLWCP

New: New Physics ... potentially revolutionary in our understanding of matter, space, and time **Light**: low mass possibly related to symmetries and experimentally accessible through direct production Weakly-Coupled: implies perhaps a very high energy scale is involved and intensity experiments might be required to see rare processes sterile neutrinos Particles: many possibilities axions Strong overlap with CF-3: Non-WIMP Dark Matter

Portals connecting to the SM

Higgs Portal

$$\epsilon_h |h|^2 |\phi|^2$$

Neutrino Portal

$$\epsilon_{\nu} (hL) \psi$$

Vector Portal

$$\frac{1}{2}\epsilon_{\mathbf{Y}}\,F_{\mu\nu}^{Y}F^{\prime\mu\nu}$$

Axion Portal

$$rac{1}{f_a} {m a} F_{\mu
u} ilde{F}^{\mu
u}$$

Philip Schuster

Low mass scalars (pseudo-scalars) arise in many theoretical models (for example, modui in string theory, symmetry breaking at high scales, etc.)

Axions

 Postulated in the late 1970s as a consequence of not observing CP violation in the strong interaction.

$$L_{CP} = -\frac{\alpha_s}{8\pi} (\Theta - \arg \det M_q) \operatorname{Tr} \tilde{G}_{\mu\nu} G^{\mu\nu}$$

$$0 \le \overline{\Theta} \le 2\pi$$

Raffelt

- The measurement of the electric dipole of the neutron implies $\overline{\Theta}$ < ~10⁻¹⁰. => Strong CP Problem of QCD
 - This is very much on the same order of an issue with the Standard Model as the hierarchy problem that motivates supersymmetry.
 - Axions originate from a new symmetry that explains small $\overline{\Theta}$

Bjorken "Axions are just as viable a candidate for dark matter as sparticles" Wilczek "If not axions, please tell me how to solve the Strong-CP problem" Witten "Axions may be intrinsic to the structure of string theory"

Axions and Axion-like particles

- Axion mass related to the pion mass: $m_a \sim m_\pi f_\pi/f_a = \frac{0.60 \text{ meV}}{f_A/10^{10} \text{ GeV}}$
- Axions couple to two photons

Raffelt

· An axion-like-particle (ALP) is a more general particle that can arise from either a pseudoscalar or scalar field, ϕ , and no longer has the connection to the pion.

$$\mathcal{L}_{\mathrm{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} \widetilde{F}^{\mu\nu} = \frac{\phi}{M} (\vec{E} \cdot \vec{B})$$

$$\mathcal{L}_{\mathrm{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu} = \frac{\phi}{M} (\vec{E} \cdot \vec{E} - \vec{B} \cdot \vec{B})$$

Current constraints

- Axion and ALP parameters are constrained by astrophysical and experimental measurements
 - Stars don't burn out and hot dark mater not likely.
 - Laser, microwave cavity, solar telescopes (helioscopes) are a <u>partial list</u> of techniques that provide experimental bounds.

M Pivovaroff

Intriguing observation

2006: spurious signal in an experiment looking to study polarization of the vacuum - theoretical ways to evade limits

Redo a "Light shining through a wall" experiment

World-wide effort

CAST Experiment

· CERN Axion Solar Telescope

Point LHC dipole toward the sun.

Detect possible X-rays from axion reconversion.

CAST

CAST Results

2007 limits in vacuum $< 0.88 \times 10^{-10} \, GeV^{-1}$

Coherence lost at large m_a . Program 2009-2011 to use buffer gasses to give an effective photon mass that can be scanned versus gas pressure.

CAST, arXiv:1307.1985 [hep-ex]

Motivation for $g_{\alpha\gamma\gamma} \sim 10^{-(11ish)}$

Anomalous observation of high energy gamma rays

Hints of anomalous cooling of white dwarf stars

Next generation light shining through walls

Matched optical cavities on both sides of the wall give an enhancement of \mathcal{FF} (finesse)

F. Hoogeveen and T. Ziegenhagen, Nucl. Phys. B **358**, 3 (1991) Mueller, Sikivie, Tanner, van Bibber, Phys. Rev. D **80**, 072004 (2009) Phys. Rev. Lett. **98**, 172002 (2007)

ALPS-II DESY approved first stages towards ALPS-II

Axel Linder

Parameter	Scaling	ALPS-I	ALPS-IIc	Sens. gain
Effective laser power P_{laser}	$g_{a\gamma} \propto P_{\rm laser}^{-1/4}$	$1\mathrm{kW}$	$150\mathrm{kW}$	3.5
Rel. photon number flux n_{γ}	$g_{a\gamma} \propto n_{\gamma}^{-1/4}$	1 (532 nm)	$2 (1064 \mathrm{nm})$	1.2
Power built up in RC $P_{\rm RC}$	$g_{a\gamma} \propto P_{reg}^{-1/4}$	1	40,000	14
BL (before& after the wall)	$g_{a\gamma} \propto (BL)^{-1}$	$22\mathrm{Tm}$	$468\mathrm{Tm}$	21
Detector efficiency QE	$g_{a\gamma} \propto QE^{-1/4}$	0.9	0.75	0.96
Detector noise DC	$g_{a\gamma} \propto DC^{1/8}$	$0.0018\mathrm{s}^{-1}$	$0.000001\mathrm{s}^{-1}$	2.6
Combined improvements				3082

REAPR – US effort (Univ of Florida and Fermilab, etc.) submitting R&D proposals. Related laser expt's at FNAL.

Possible reach

Cost driven by laboratory support of operating a long string of superconducting magnets.

DESY: HERA magnets

FNAL: Tevatron "

Baseline design with BL=180 Tesla-meters, with F=3 10⁵, P=10W, Integration time T=30 days.

IAXO

International axion x-ray observatory

- Collaboration formed and growing
 - 100 physicists, 20 institutions,
 15 countries
- Conceptual design report in preparation; LOI solicited by CERN and submitted August 2013
- 4th gen helioscope supported in 2011 ASPERA roadmap

- Socializing IAXO with DOE/SC/HEP and communities of interest (dark matter, particle astrophysics, ...)
- Budget [ROM] = \$60-110M (dependent on cost models)
 - \$30M magnet
 - \$10M CF
 - \$16M optics
 - \$ 6M detectors

does not include labyrgel

ADMX Experiment

- Axion Dark Matter Experiment
 - Tunable microwave cavity in B field looking for dark matter axions converting into a detectable photons.

High Q cavity

SQUID for receiver

ADMX

ADMX Results and Future

Stage	Phase 0	Phase I	Phase II	
Technology	HEMT; Pumped LHe	Replace w. SQUID	Add Dilution Fridge	

Phase I at LLNL published Phase II being installed at U of Wash R&D ongoing for ADMX-HF

Chameleons

A Chameleon is a particle whose properties depend on it's environment. At low mass density the chameleon is light, and acquires a large effective mass in high mass density.

- → A possible dark energy particle
- → Afterglow experiment is one test

$$\mathcal{L}_{\rm int} = -V(\phi) + \exp\left(\frac{\phi}{M_D}\right) g_{\mu\nu} T^{\mu\nu} - \frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu}$$

Axion-like particle parameter space

Points for HEP Community

- New light weakly-coupled particles
 - Strongly motivated theoretically
 - Hints from astrophysical observations
 - The Intensity Frontier approach provides a means to directly produce new particles and explore New Physics at low energy
 - Energetic subfield of particle physics with world-wide interest
 - Opportunities are quite extensive, sometimes limited by imagination, and represent a low cost means towards high impact discovery physics!